A $$(1.4 + \epsilon )$$-approximation algorithm for the 2-Max-Duo problem
نویسندگان
چکیده
منابع مشابه
A (1.4 + epsilon)-Approximation Algorithm for the 2-Max-Duo Problem
The maximum duo-preservation string mapping (Max-Duo) problem is the complement of the well studied minimum common string partition (MCSP) problem, both of which have applications in many fields including text compression and bioinformatics. k-Max-Duo is the restricted version of Max-Duo, where every letter of the alphabet occurs at most k times in each of the strings, which is readily reduced ...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولApproximation Algorithm for the Max-Cut Problem
In this project, we investigated several approximation algorithms for the Max-Cut problem. Our main approach to this problem is a semideenite program (GW) based algorithm that has a performance guarantee of at least 0.878 of the optimal cut. We also show that we can perform exhaustive local search on top of the GW to enhance the result. Our results show that the running time of the local search...
متن کاملA 7/2-Approximation Algorithm for the Maximum Duo-Preservation String Mapping Problem
This paper presents a simple 7/2-approximation algorithm for the max duo-preservation string mapping (MPSM) problem. This problem is complementary to the classical and well studied min common string partition problem (MCSP), that computes the minimal edit distance between two strings when the only operation allowed is to shift blocks of characters. The algorithm improves on the previously best ...
متن کامل2 . 2 A 78 - Approximation Algorithm for MAX 3 SAT
In CS109 and CS161, you learned some tricks of the trade in the analysis of randomized algorithms, with applications to the analysis of QuickSort and hashing. There’s also CS265, where you’ll learn more than you ever wanted to know about randomized algorithms (but a great class, you should take it). In CS261, we build a bridge between what’s covered in CS161 and CS265. Specifically, this lectur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Combinatorial Optimization
سال: 2020
ISSN: 1382-6905,1573-2886
DOI: 10.1007/s10878-020-00621-0